
DEPARTMENT OF THE NAVY
OFFICE OF COUNSEL

NAVAL UNDERSEA WARFARE CENTER DIVISION
1176 HOWELL STREET

NEWPORT Rl 02841 1708
IN REPLY REFER TO

Attorney Docket No. 100581
14 Mar 12

The below identified patent application is available for
licensing. Requests for information should be addressed to

TECHNOLOGY PARTNERSHIP ENTERPRISE OFFICE
NAVAL UNDERSEA WARFARE CENTER
117 6 HOWELL ST.
CODE 07TP, BLDG. 990
NEWPORT, RI 02841

Serial Number 13/238,372

Filing Date 21 September 2011

Inventor Kevin C. Mattos

Address any questions concerning this matter to the Office of
Technology Transfer at (401) 832-1511.

rzo\20i>]^osl
DISTRIBUTION STATEMENT
Approved for Public Release
Distribution is unlimited

Attorney Docket No. 100581

SYSTEM AND METHOD FOR A SIMPLE NETWORK

MANAGEMENT PROTOCOL DOWNTIME CALCULATOR

STATEMENT OF GOVERNMENT INTEREST

[0001] The invention described herein may be manufactured and

used by or for the Government of the United States of America

for Governmental purposes without the payment of any royalties

thereon or therefor.

CROSS REFERENCE TO OTHER PATENT APPLICATIONS

[0002] None.

BACKGROUND OF THE INVENTION

.1) Field of the Invention

[0003], This disclosure relates in general to the field of

computer networks and, more particularly, to a system and method

for a simple network management protocol (SNMP) downtime

calculator.

2) Description of Prior Art

[0004] Suitability of a network system may be evaluated by

analyzing reliability, availability and maintainability, (RAM)

at a subsystem level to ensure that the subsystems meet

specified RAM requirements. In particular, calculation of

operational availability (A0) of systems may involve monitoring

downtime, for example, when subsystems break down and are in

1

need of repair. Monitoring downtime may be performed manually,

or automatically, for example, with the use of Simple Network

Management Protocol (SNMP). where the SNMP architecture system

acts as a system manager, and other systems on the network have

SNMP agents reporting SNMP trap events (e.g., downtime events)

back to the SNMP architecture system.

[0005] Currently there is a need for evaluation of both RAM

and RAM growth through a viable RAM improvement strategy that

includes a reliability growth program as an integral part of

design and development of large systems. The purpose of the RAM

evaluation and growth efforts is to ensure network system

quality and longevity. In particular, RAM metrics become

increasingly important to quantitatively evaluate quality of

software both during development periods and in operational use

as complexity of software systems increases. With increased

complexity comes an increased level of effort to properly

analyze RAM metrics. Implementing a RAM strategy involves

collecting data during specific test events and during normal

system use.

[0006] However, currently, the ability to evaluate certain

systems during normal use in great detail can be difficult.

Typical testing periods can produce a large number of SNMP

events (e.g., upwards of 100,000), making manual or automatic

analysis of downtime and operational availability for each

subsystem potentially impossible without the use of a parsing

tool. For example, constant diligence in logging software

failures may be required by a work force already occupied with

system operation. Automated logs can greatly assist in

recording this data, but it can be difficult to analyze these

logs to get an accurate picture of the overall subsystem and

system RAM on board. In fact, previous efforts to collect RAM

data proved that analysis on such data is tedious and difficult

and can be error prone.

[0007] For at least these reasons, a system and method to

automatically calculate and analyze SNMP downtime from captured

failure events of each subsystem in a SNMP network is needed.

Embodiments of the present invention can play a large part in

helping streamline analysis of RAM and RAM growth, particularly

in environments where data collection is much more difficult due

to lack of dedicated manual logging of failure data. Embodiments

according to the present invention can provide a more accurate

picture of how subsystems are performing compared to manual

methods. This can aid in reliability growth analysis

predictions and ensure the right problems are being fixed.

SUMMARY OF THE INVENTION

[0008] According to an example embodiment of the present

invention, a method includes storing a log comprising a

plurality of trap events from corresponding nodes in a subsystem

in a network, the plurality of trap events comprising down

events and up events, parsing the log to separate down events

and up events, pairing down events with corresponding up events,

the pairing including matching, for each node in the subsystem,

a down event having a severity level with an up event having the

same severity level, calculating subsystem downtime, and

calculating operational availability of the subsystem. More

specific embodiments include determining overlapping downtime

and other features.

[0009] According to an example embodiment of the present

disclosure, a system includes at least one subsystem in a simple

network management protocol (SNMP) network, at least one SNMP

manager connected to the network, and a calculator comprising a

database operable to store a log of a plurality of trap events

from corresponding nodes in the at least one subsystem, the

plurality of trap events including down events and up events, a

parsing module operable to parse the log to separate down events

and up events, a pairing module operable to pair down events

with corresponding up events, including by matching, for each

node in the subsystem, a down event having a severity level with

an up event having a corresponding severity level, a timestamp

module operable to identify corresponding times of occurrence of

events, and a report module operable to generate a report

4

comprising down events and corresponding up events with

respective times of occurrence. More specific embodiments

include the use of a MySQL relational database and other

features.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] To provide a more complete understanding of the

present disclosure and features and advantages thereof,

reference is made to the following description, taken in

conjunction with the accompanying FIGURES, wherein like

reference numerals represent like parts, in which:

[0011] FIG. 1 is a simplified block diagram of an embodiment

of a system associated with calculating and analyzing SNMP

downtime in accordance with the present disclosure;

[0012] FIG. 2 illustrates example operational steps in a

method associated with embodiments of the present disclosure;

[0013] FIG. 3 shows an example report associated with

embodiments of the present disclosure; and

[0014] FIG. 4 illustrates example operational steps

associated with a method according to embodiments of the present

disclosure.

DETAILED DESCRIPTION OF THE INVENTION

[0015] It is to be understood that the following disclosure

describes several exemplary embodiments for implementing

different features, structures, or functions. Exemplary

embodiments of components, arrangements, and configurations are

described below to simplify the present disclosure. However,

these exemplary embodiments are provided merely as examples and

are not intended to limit the scope of the disclosure.

[0016] The present disclosure may repeat reference numerals

and/or letters in the various exemplary embodiments and across

the Figures, provided herein. This repetition is for the

purpose of simplicity and clarity and does not in itself dictate

a relationship between the various exemplary embodiments and/or

configurations discussed in the various Figures.

[0017] Turning to FIG. 1, there is illustrated a simplified

block diagram of a system 10 for calculating and analyzing SNMP

downtime. Networked subsystems 12 provide SNMP trap messages

14, corresponding to trap events, to a SNMP manager 16. In an

example embodiment, SNMP manager 16 is located centrally in the

network. SNMP trap messages 14 may contain information

regarding the nature of the trap events and message

identification (e.g., identification of a node at which the

event occurred). SNMP manager 16 can compile the SNMP trap

messages 14 to provide SNMP logs 18 corresponding to SNMP trap

6

event messages 14 to a calculator 20. Subsystems 12, and SNMP

manager 16, may be nodes on a network 22. Subsystem 12 may

comprise nodes within the subsystem. A node may be any

electronic device (e.g., machine device or a mobile device),

network element, client, server, peer, service, application, or

other object capable of sending, receiving, or forwarding

information over communications channels in a network.

Calculator 20 can comprise various modules including parsing

module 24, pairing module 26, report module 28, time stamp

module 30, memory 32, processor 34 and database 36. Processor

34 may comprise database manipulator module 38 and Java module

40.

[0018] Embodiments of system 10 according to the present

disclosure may provide a means to assess and record system

network faults and to calculate downtimes for any number of

systems. As used herein, the term "system" encompasses hardware

and software systems, for example, systems based on SNMP trap

events. Embodiments of the system disclosed herein Can operate

on data collected from a network featuring SNMP agents (e.g.,

agents implemented on subsystems 12) that report back to a

central system manager (e.g., SNMP manager 16) on the status of

their health with conventional SNMP message attributes.

Aggregate system downtime as well as downtime associated with

user-selected events of interest can be calculated by calculator

20.

[0019] Embodiments of system 10 according to the present

disclosure can calculate individual subsystem downtime by

accumulating all node downtime for "down" and "up" events. As

used herein, a "down" event encompasses lost communication with

a network as reported by a node in network 22 to an SNMP agent

residing in corresponding subsystem 12. An "up" event

encompasses re-established communication with the network as

reported by a node in network 22 to an SNMP agent residing in

corresponding subsystem 12. In general a down event may have a

corresponding up event associated with a node in subsystem 12.

[0020] In many cases, nodes within a subsystem 12 may report

down at the same time, and calculator 20 can run an algorithm

that removes any overlapping downtime from the subsystem

downtime calculation to present a more accurate assessment of

overall individual subsystem downtime. This calculated downtime

can be utilized in an availability calculation to present the

user with an operational availability (A0) for each subsystem 12

that reports either an up or down event for a captured testing

period (e.g., testing period or time window set by a user).

[0021] For purposes of illustrating certain example

techniques of system 10, it is important to understand SNMP

networks and operational availability calculations for RAM

8

determinations. The following foundational information may be

viewed.as a basis from which the present invention may be

properly explained. Such information is offered earnestly for

purposes of explanation only and, accordingly, should not be

construed in any way to limit the broad scope of the present

invention and its potential applications.

[0022] In general, SNMP is an Internet-standard protocol for

managing network-attached devices on IP networks. It is used

mostly in network management systems to monitor network-attached

devices for conditions that warrant administrative attention,

such as downtime events. SNMP systems use one or more

administrative computers called managers (e.g., SNMP manager 16)

to monitor or manage one or more subsystems (e.g., a group of

devices, subsystem 12) on a computer network (e.g., network 22).

Each managed subsystem executes a software component called an

agent which reports information via SNMP to the SNMP manager.

An SNMP-managed network can consist of three key components: (1)

Managed subsystem; (2) Agent, which is a software that runs on

managed subsystems; and (3) Network management system (NMS),

which is a software that runs on the SNMP manager.

[0023] As used herein, the term "managed subsystem"

encompasses network nodes that implement an SNMP interface

allowing unidirectional (read-only) or bidirectional access to

node-specific information. Managed subsystems can exchange

9

node-specific information with NMSs. Managed subsystems can be

any type of devices, including, but not limited to, routers,

access servers, switches, bridges, hubs, IP telephones, IP video

cameras, computer hosts, and printers.

[0024] An agent is a network-management software module that

resides on a managed subsystem. An agent has local knowledge of

management information and translates that information to or

from an SNMP specific form. A network management system (NMS)

executes applications that monitor and control managed

subsystems. One or more NMSs may exist on any managed network.

[0025] Such SNMP networks (e.g., network 22) may be used to

evaluate RAM metrics (e.g., operational availability) in SNMP

systems (e.g., submarine systems). Operational availability is

defined as the probability that a system will be ready to

perform its specified function, in its specified and intended

operational environment, when called for at a random point in

time. The equation to calculate operational availability (A0) is

provided by the following mathematical relation:

Up Time

(Up Time + Down Time) (1s

[0026] In-lab operability tests provide a convenient method

for assessing and calculating operational availability for all

subsystems involved in testing. Events that bring the system to

a down state can be logged and time stamped manually, and once

10

the system is brought back to an up state, that time stamp can

also be logged. A difference between the two time stamps can be

calculated, and the downtime for that single event can be found

following each test, all downtime for each subsystem is

accumulated, and an operational availability can be calculated

for each subsystem. However, in situations where system

maturity is low, and down events occur simultaneously,

calculating downtime from overlapping downtimes can be

problematic.

[0027] The following examples illustrate the overlapping

downtime issue: assume that subsystem A has a 24 hour test.

Down event 1 occurs 1 hour into the test, and is repaired 4

hours into the test (for a total of 3 hours of downtime, 21

hours of uptime). Operational availability (A0) for subsystem A

is :

, 21 , =0.875
(21 + 3)

0

[0028] Subsystem B has a 24 hour test. Down event 1 occurs 1

hour into the test, and is repaired 4 hours into the test. Down

event 2 occurs 2 hours into the test, and is repaired 6 hours

into the test. Downtime for down event 1 is 3 hours; the

downtime for down event 2 is 4 hours. But, in this case, the

total subsystem downtime is not 3+4 = 7, because there was a

period of time when the subsystem was already considered in a

11

down state, and a second down event occurred. The subsystem

cannot be marked down twice, so the time when both events were

down may be removed from the total system downtime. The

modified Operational Availability calculation is:

Up Time

(Up Time + (Down Time - Overlapping downtime)) ,^\

where Up time is calculated as Total System Time - (Downtime -

Overlapping downtime), in this case 24 - (7-2) = 19. In the

example, AD of Subsystem B is:

A„=7 \- ^ = 0.791 (4)
0 (19+ (7-2))

[0029] The process to manually go through events for each

subsystem and remove overlapping downtime is both tedious and

error prone. The results can be long lead times for test

reports, and inaccurate subsystem A0 numbers due to

miscalculations. In particular, during at-sea operations,

manually collecting failure data consistently can be a near

impossibility. It may not be possible to carry sufficient

manpower on board to log such data due to space limitations and

budget constraints.

[0030] Automation of data logging may be implemented through

a SNMP network where a designated system acts as a system

manager, and other systems on the network have SNMP agents

reporting SNMP events back to the designated system. These

12

events are captured and stored in the designated system. They

are exportable from the designated system in the form of simple

Structured Query Language (SQL) statements. These SNMP SQL

statements may be analyzed for their ability to provide

necessary data to calculate Ao for subsystems reporting back to

the designated subsystem.

[0031] Although automatic logging of up and down events via a

SNMP network is useful, analyzing the logs may have to be

performed manually with consequent errors and difficulties. A

system for calculating and analyzing SNMP downtime outlined by

FIG. 1, can resolve many of these issues. Embodiments of the

present disclosure can reduce labor hours, contribute to a more

timely production of test reports, and reduce errors by removing

manual evaluation of subsystem events to remove overlapping

downtime.

[0032] Turning to the infrastructure of FIG. 1, in an example,

embodiment, calculator 20 may be located on SNMP manager 16 and

configured to run analysis on SNMP logs 18 in real time.

According to another example embodiment, calculator 20 may be

located on a separate network or system that may be connected to

SNMP manager 16 via standard network connection or one way point

to point interface connection. Such network connection may

include wired or wireless connections including Bluetooth,

Zigbee, IEEE 802.llx, WiFi Direct, 60 GHz, ultrawideband (UWB),

13

a USB cable, an HDMI cable, etc. Such an architecture may be

used for post test analysis. According to yet another example

embodiment, which may be suitable for post test analysis,

calculator 20 may not be connected to SNMP manager 16, and SNMP

logs 18 may be passed via alternate means such as removable

media (e.g., sneaker-net through magnetic tape, floppy disks,

compact discs, CD archives, USB flash drives, external hard

'drives, etc .) .

[0033] According to embodiments of the present disclosure,

database 36 in calculator.20 can be a standard relational

database, for example, MySQL database that runs as a server

providing multi-user access to database 36. SNMP trap events

may be stored in database 36 and may be parsed by parsing module

24 to determine down and up events. The down and up events may

be configurable within database 36. Therefore, the notion of

paired events can be suited to specific SNMP trap events if such

events exist.

[0034] Pairing module 26 may pair down and up events

corresponding to the same node. In an example embodiment, a

default configuration may be to key on standard node down-node

up events. Each of these events may be time-stamped with a

standard UNIX time stamp when they are reported to SNMP manager

16, or they may be time stamped by time stamp module 30 in

calculator 20. Report module 28 may present a user with a

14

report containing paired down and up events for nodes in

corresponding subsystems 12. Mapping of nodes to subsystems and

corresponding severities are also configurable within database

36.

[0035] Database manipulator 38 in processor 36 may save SNMP

logs 18 as text files. Database manipulator 38 may communicate

with database 36, Java module 40, and memory 32 to execute a

method (e.g., an algorithm) for calculating downtime for

individual subsystems. Processor 32 may send a list of complete

down-up events for every node in network 22 for a given time

period based on standard SNMP messages captured by SNMP manager

16 to report module 28.

[0036] In an example embodiment according to the present

disclosure, system .10 may be implemented in a software entity

that can easily be transported to a laptop or desktop free of

the environment it is analyzing. Software may be written in

Java, and therefore can run under Java Virtual Machine (JVM) in

any operating system that supports the JVM (e.g., tested under

Windows 2000, Windows XP, and Red Hat Linux 8.1). The software

can interface with database 36 that contains SNMP trap events.

As the trap events are exported as SQL statements, they may be

brought into database 36 using simple, known methods.

[0037] Turning to FIG. 2 there is illustrated an example of

operational steps in method 50 according to embodiments of the

15

present disclosure. Method 50 starts in step 52 when SNMP logs

18 are retrieved by calculator. 20. Database manipulator 38 may-

save SNMP logs 18 as text files containing SQL script from tests

on subsystems 12 in step 54. In step 56, SQL scripts may be run

through a compiler (e.g., MySQL compiler), and the processed

logs may be stored in database 36 sorted by down date. Java

module 40 in processor 34 may convert UNIX time (if any) into

real date stored in database 36 in step 58.

[0038] A database status may give a user the date range of

all data in database 36 in standard mm/dd/yyyy format (converted

from Unix time) . . A starting and ending date and time for a

specific analysis may be entered. In an example embodiment, the

user may be prompted to enter the starting date and time period

that the user wishes to analyze, followed by an ending date and

time. The user may also put a limit on the severity of the

events analyzed. The user may run parsing module 24.

[0039] In step 60, faulted and failed events are pulled out

and corresponding up events are found by Java module 4 0 in

conjunction with parsing module 24 and pairing module 26.

Report module 28 shows (e.g., in table format) a list of all

singular events (paired up and down events) with their

corresponding subsystem and a mm/dd/yyyy time stamp of when the

event was reported down, and when it was reported back up.

Downtime is calculated in step 62 as the time between down

16

(e.g., faulted) and up (e.g., cleared) events. In step 64 the

calculated downtime Is used to determine operational

availability. The process ends in step 66.

[0040] Turning to FIG. 3, there is illustrated an example

report 70 of down and corresponding up events according to

embodiments of the present disclosure. Report module 28 may

present a user with a table of single events (e.g., consisting

of both the down and up messages) and the time they occurred.

For example, column 72 may present a title of the captured

event. Each node, which is associated with a corresponding

subsystem 12 that owns the node, is also presented to the user

for each event, for example, in column 74. Column 76 may

display subsystem 12 corresponding to the node. Columns 78 and

80 may display the down and up times, respectively,

corresponding to the event. Downtime for each event can be

presented to the user as well, for example, in column 82. The

report shown in FIG. 3 is illustrated as an example, and not a

limitation of the present disclosure. Various other formats and

presentation modes not disclosed herein may be used to display

the information. The table may be presented on a computer

monitor or other suitable user interface. Alternatively and

additionally, the user may generate a printout of the report.

[0041] Turning to FIG. 4, there is illustrated an example of

operational steps associated with a method 100 according to

17

embodiments of the present disclosure. In an example

embodiment, method 100 may be used for matching down events with

up events and it may be based on a matching of event severities

for messages with the same ID (e.g., for a down event and

corresponding up event) obtained from a SNMP trap message 14.

Calculator 20 can provide for a subsystem level A0 analysis.

This analysis includes method 100 to remove overlapping downtime

from subsystem A0 calculations. Method 100 may be detailed in

the table below:

Sort SNMP event database by reporting time in ascending order
Set desired severity levels to indicate up and down events:
sevLevelUp, sevLevelDown
Set desired time window:
timeStart, timeEnd
Set all subsystem downtimes to 0
For each event e in database where timestamp of e (tsE) > =timeStart AND <=timeEnd
Ife.sevLevel = sevLevelDown

i
elD = e.ID
While not done parse each event fin database starting at e+1

IffsevLevel = sevLevelUp AND f ID = elD
{

If timestamp off(tsF) > tsE

{
eventDowntime=tsF-tsE
done = true

}
}
Get parent subsystem for node, subsystem
If subsystem has no previous errors

Subsystem. eventDowntime = eventDowntime
set subsystem. downAt = tsE
set subsystem. upAt = tsF

else
iftsE <= subsystem.upAt

 {_

18

Else
{

IfftsF < = subsystem. Up At)
Do nothing; time overlaps
Else if (tsF-subsystem.UpAt>0)
{

slightOverlap = tsF-subsystem. Up At
subsystem.downtime += slightOverlap
sub system, up At = tsF

}
Else if(tsF - subsystem.DownAt>0)
{

No overlaps
Subsystem. downAt = tsE
Subsystem.upAt = tsF
Subsystem.downtime += eventDowntime

}

No overlaps
Subsystem.downAt = tsE
Subsystem.upAt'•- tsF
Subsystem.downtime += eventDowntime

I

[0042] As illustrated in FIG. 4, method 100 starts in step

102 when calculator 20 is ready to perform A0 analysis, for

example, when commanded by a user. In step 104, SNMP trap

events in database 36 may be sorted in ascending order. In step

106, severities may be assigned to up and down events. In an

example embodiment, severity levels captured from the SNMP trap

events may be categorized into a range from 0 for informational

events to 5 for system failure. In an example embodiment, the

user may assign severities. Alternatively, severities may be

19

pre-assigned by calculator 20 based on the nature of the SNMP

event.

[0043] In step 108, desired time window for analysis may be

set. In an example embodiment, the user may be prompted to

enter the starting date and time period that the user wishes to

analyze, followed by an ending date and time. In step 110,

message number E is assigned a value of 1 (i.e., first message

in the database corresponding to an event in the time window).

The event corresponding to the message (i.e., event (E)) is

parsed in step 112. A timestamp of the event is obtained and set

to variable tsE in step 114. If event (E) is not within the

desired time window (set earlier in step 108), variable E is

advanced by 1 in step 118. Database 36 may be checked in step

120 to determine if all events have been analyzed. If all events

have been analyzed, the process ends in step 122. Otherwise,

the next event in database 36 is parsed according to step 112.

[0044] If event is within time window as determined in step

116, event severity is checked to determine if it matches down

severity in step 124 (i.e., event(E) corresponds to a down

event). If not, the processing proceeds to the next event as

indicated in step 118. Otherwise, if severity of event (E)

matches down severity, event identification number (ID) (e.g.,

corresponding to message identification number) is obtained and

variable EID is set to the event ID in step 126.

20

[0045] The calculations proceed to determine downtime for all

events occurring after event corresponding to message E. In step

128, message number variable F is set to E+l. Event

corresponding to message F (i.e., event (F)) is parsed in step

130. In step 132, event ID (e.g., corresponding to message ID)

is obtained and variable FID is set to event ID. If FID is not

the same as EID (obtained in step 126) as determined in step

134, database 36 is checked in step 136 to determine if events

are over. If the events are not over, the calculation proceeds

to the next event, and message number variable F is advanced by

1 in step 138. If all events are over as determined in step

136, the calculation proceeds to the next event in the time

window corresponding to message number E+l in step 118.

[0046] Next, down events are paired with corresponding up

events for the same ID (e.g., node), the pairing comprising

matching, for each node in the subsystem, a down event having a

severity level with an up event having a designated

corresponding severity level. If FID is the same as EID as

determined in step 134, event severity is checked to determine

if it matches up-severity in step 140 (i.e., event (F) is an up

event with same severity as event (E)). If FID is not equal to

EID (i.e., event (F) does not correspond to the same node as

event (E)), the calculation loops back to step 136 to determine

if events in database 36 are over. If event severity matches

21

up-severity, event timestamp is obtained in step 142 and

timestamp value is assigned to variable tsF. If tsF (obtained

in step 142) is not greater than tsE (obtained in step 114),

(i.e., event (F) occurred after event (E)) as determined in step

144, the calculation loops back to step 136 to determine if

events in database 36 are over. Otherwise, event downtime.is

set to the difference between tsF and tsE (i.e., EVENT DOWNTIME

= tsF-tsE) in step 146. Parent subsystem 12 (e.g.,

corresponding to node at which event occurred) for the

node/event is obtained in step 148.

[0047] In step 150, a determination of any previous errors in

subsystem 12 is made. If previous errors do not exist,

subsystem event downtime is advanced by the previously

calculated event downtime (calculated in step 146) in step 152.

A subsystem down-at-time (SUBSYSTEM.DownAt) is identified

corresponding to a time of occurrence of a last previous down

event whose event downtime has been calculated. A subsystem up-

at-time (SUBSYSTEM.UpAt) corresponding to a time of occurrence

of the corresponding up event is also identified.

SUBSYSTEM.DownAt is updated to tsE and SUBSYSTEM.UpAt is updated

to tsF also in step 152.

[0048] If previous errors exist, tsE is compared with

SUBSYSTEM.UpAt in step 154. If tsE is greater than

SUBSYSTEM.UpAt (i.e., current down event occurred after the last

22

up event in the subsystem), there is no overlapping downtime,

and subsystem event downtime is advanced by the previously

calculated event downtime in step 152. On the other hand, if

tsE is less than or equal to SUBSYSTEM.UpAt (i.e., current down

event occurred before the last up event in the subsystem), tsF

is compared to SUBSYSTEM.UpAt in step 156. If tsF is less than

or equal to SUBSYSTEM.UpAt (i.e., current up event occurred

before the last up event in the subsystem), there is an overlap

in downtime requiring no update to the subsystem event downtime

as shown in step 162.

[0049] If tsF is greater than SUBSYSTEM.UpAt, tsF-

SUBSYSTEM.UpAt is compared to 0 in step 158. If tsF-

SUBSYSTEM.UpAt is greater than 0 (i.e., current up event

occurred after the last up event in the subsystem), it implies a

slight overlap over SUBSYSTEM.UpAt (i.e., SLIGHT OVERLAP = (tsF-

SUBSYSTEM.UpAt)) as indicated in step 160. Subsystem event

downtime is updated to add the slight overlap corresponding to

the difference between the second timestamp and the subsystem

up-at-time (i.e., SUBSYSTEM.DOWNTIME + = SLIGHT OVERLAP) and

SUBSYSTEM.UpAt is updated to tsF.

[0050] If tsF-SUBSYSTEM.UpAt is not greater than 0 (i.e.,

current up event occurred before the last up event in the

subsystem), tsF-SUBSYSTEM.DownAt is compared to 0 in step 159.

If tsF-SUBSYSTEM.DownAt is greater than 0, there is no

23

overlapping downtime, and subsystem event downtime is advanced

by the previously calculated event downtime in step 152. If

tsF-SUBSYSTEM.DownAt is not greater than 0, then subsystem event

downtime requires no update to the subsystem event downtime as

shown in step 162. A subsystem down-at-time (SUBSYSTEM.DownAt)

is identified corresponding to a time of occurrence of a last

previous down event whose event downtime has been calculated. A

subsystem up-at-time (SUBSYSTEM.UpAt) corresponding to a time of

occurrence of the corresponding up event is also identified.

SUBSYSTEM.DownAt is updated to tsE and SUBSYSTEM.UpAt is updated

to tsF also in step 152. Thus, overlapping downtimes can be

eliminated accurately from calculation of subsystem event

downtime.

[0051] In example embodiments, the operations as outlined

herein may be implemented by logic encoded in one or more

tangible media, which may be inclusive of non-transitory media

(e.g., embedded logic provided in an ASIC, digital signal

processor (DSP) instructions, software potentially inclusive of

object code and source code to be executed by a processor or

other similar machine, etc.). In some of these instances, one

or more memory elements (e.g., memory element 32) can store data

used for the operations described herein. This includes the

memory elements being able to store software, logic, code, or

24

processor instructions that are executed to carry out the

activities described in this Specification.

[0052] Additionally, calculator 20 and associated or

integrated components may include processing elements (e.g.,

processor 34, etc.) that can execute software or algorithms to

perform activities to enable calculating and analyzing SNMP

downtime, and to route packets using suitable routing protocols.

A processor can execute any type of instructions associated with

the data to achieve the operations detailed herein in this

Specification. In one example, the processors (as shown in

various FIGS.) could transform an element or an article (e.g.,

data) from one state or thing to another state or thing. In

another example, the activities outlined herein may be

implemented with fixed logic or programmable logic (e.g.,

software/computer instructions executed by a processor) and the

elements identified herein could be some type of a programmable

processor, programmable digital logic (e.g., an FPGA, an EPROM,

an EEPROM), or an ASIC that includes digital logic, software,

code, electronic instructions, flash memory, optical disks, CD-

ROMs, DVD ROMs, magnetic or optical cards, other types of

machine-readable mediums suitable for storing electronic

instructions, or any suitable combination thereof. Any of the

potential processing elements, modules, microprocessors, digital

signal processors (DSPs), and other devices described in this

25

Specification should be construed as being encompassed within

the broad term ^processor.'

[0053] While certain embodiments in the present disclosure

have been described with reference to submarine systems, the

embodiments may be also used with other applications and

scenarios. For example, embodiments according to the present

disclosure may be applied in general to systems implementing

SNMP architecture, such as automated production lines,

computerized logistics management, plant facility operations,

financial networks, railroad networks, etc. Embodiments of the

methods (e.g., method 100) for automatically removing

overlapping downtime to calculate operational availability for a

system can be used for any situation where a network system can

have multiple faults occur simultaneously and downtime for each

fault is measured independently.

[0054] Note that in this Specification, references to various

features (e.g., elements, structures, modules, components,

steps, operations, characteristics, etc.) included in "one

embodiment", "example embodiment", "an embodiment", "another

embodiment", "some embodiments", "various embodiments", "other

embodiments", "alternative embodiment", and the like are

intended to mean that any such features are included in one or

more embodiments of the present disclosure, but may or may not

necessarily be combined in the same embodiments.

26

[0055] It will be understood that many additional changes in

the details, materials, steps and arrangement of parts, which

have been herein described and illustrated in order to explain

the nature of the invention, may be made by those skilled in the

art within the principle and scope of the invention as expressed

in the appended claims.

27

Attorney Docket No. 100581

SYSTEM AND METHOD FOR A SIMPLE NETWORK

MANAGEMENT PROTOCOL DOWNTIME CALCULATOR

ABSTRACT OF THE DISCLOSURE

A system and method for simple network management protocol

downtime calculator includes storing a log comprising a

plurality of trap events from corresponding nodes in a subsystem

in a network, the plurality of trap events comprising down

events and up events, parsing the log to separate down events

and up events, pairing down events with corresponding up events,

the pairing including matching, for the at least one node in the

subsystem, a down event having a severity level with an up event

having the corresponding severity level, calculating subsystem

downtime, and calculating operational availability of the'

subsystem. Additional features include identifying overlapping

downtimes in the subsystem.

1/6

CNT

^

CO
CNI

o

=3 o
<
Ü

Cd Q

8^
, Q-

LU
i

y ^ —)
•2: < O
l-l-O

CO ^

is
^7
CM

t- LU >-
E =J rrr
o2 o
Q- 8 5>
LU O LU E ^ S

CM £5-^

<
>
<

o
CO
CO
LU
Ü
O TA

B
A

S
E

P

U
LA

TO
R

<z •>•

CC
Q_

/
CD
"3- oo^

CO

\L

CO
<
GQ

<
Q

.CD
co

-3-

oo
co
O
O

co
X

CD

CO < CD

2/6

54-

56-

58-

60-

52 START

SAVE SNMP LOGS AS TEXT
FILE CONTAINING SQL SCRIPT

FROM TESTS

RUN SQL SCRIPT THROUGH
COMPILER, STORE IN DATABASE

SORTED BY DOWN DATE

CONVERT UNIX TIME INTO REAL
DATE STORED IN DATABASE

PULL OUT FAULTED AND FAILED
EVENTS - FIND CORRESPONDING

UP EVENTS

f 50

62- CALCULATE TIME BETWEEN FAULTED
AND CLEARED EVENTS = DOWNTIME

64- USE DOWNTIME TO
CALCULATE AVAILABILITY

66-^/~ END

FIG. 2

3/6

c\i
oo

O
LU
CO

LU

o

<

O
OO

OO

CO
1^-

"* >-

CNJ

O
Q

CO
>-
CO
CQ

CO

Q
O

>-
<

ID
CO

•«3-
CN|

o
OD
O
O
CN
i_
CO

CM

co
en
CM

h~
LO

ai
co
ö ">;—
OO
o
o
CNJ

TO

oo

tr> co
LO CM
o
CO
c\i
O

OO
O
O
CNJ
I—
CO

OO

OO
o
o
CNJ

CO

en

LO

111
CO
< m <r <
i— l—
< <.
Q u
LU ^
cd

u_
LU
ni
Q_

LO

CO
UJ

a:
UJ
>
UJ
CO

CO
i—

CO
1—

LU
CO CO CO

Q: CO
>- i— C3Q

Q
LU o _l

ft X
< X z UJ
LU LU < LU

rr
-> u_

LU

LU • •
^LU

LLJ<£
^ Z Q
< LU «_

00 < 5:
O P U_

CO
Q

.. a:
uj o
< UJ Q/C£

co o
=1*

a
UJ

UJ
a:
Q_
CO
Q

co

CD

4/6

START

x
102

f
100

SORT SNMP EVENTS
N ASCENDING ORDER

i
ASSIGN SEVERITIES TO
UP AND DOWN EVENTS

•104

-106

SET DESIRED TIME
WINDOW FOR EVENTS

TO INCLUDE IN ANALYSIS
I

-108

112-

114

SETE=1 -110

PARSE EVENT(E)

I
GET EVENT.TIMESTAMP

SET tsE = EVENT TIMESTAMP
YES FIG. 4

»I SETE=E+1

END

118

122

126- GET EVENT ID
SET EID = EVENT ID

FIG. 4A

5/6

130-

132-

SET F = E+1
i

•128

PARSE EVENT(F)
I

GET EVENT ID
SET FID = EVENT ID

SET F = F+1
 *

GET EVENT TIMESTAMP
SET tsF = EVENT TIMESTAMP

148
SET EVENT DOWNTIME =

(tsF - tsE)

GET PARENT SUBSYSTEM FOR
NODE/ EVENT

_*

FIG.4B

6/6

152
 /

SET SUBSYSTEM EVENT
DOWNTIME + = EVENT DOWNTIME
SET SUBSYSTEM. DownAt = tsE

SETSUBSYSTEM.UpAt = tsF

NO ADDITIONAL
DOWNTIME (ALL

OVERLAPS)
S\-

•162

160

1
SLIGHT OVERLAP = (tsF-

SUBSYSTEM.UpAt)
SUBSYSTEM.DOWNTIME + =

SLIGHT OVERLAP
SUBSYSTEM.UpAt = tsF

NO ADDITIONAL
DOWNTIME (ALL

OVERLAPS)

^162

FIG.4C

